
 Performance
Whitepaper
 A comparative analysis of Vonage Video API

SPONSORED BY:

Deliver Better WebRTC Services

 2

Table of Contents

 Overview3

 Assessing Media Quality in WebRTC4

 Test Environment5

 Performance Results and Analysis7

 CPU Consumption8

 Bitrate9

 Outgoing Video Bitrate9

 Incoming Video Bitrate10

 Jitter and Packet Loss10

 Screen Sharing11

 Limited Bandwidth13

 Summary15

 3

Overview
WebRTC is the enabler of many of our real time communication
interactions. While the technology itself is open, the quality derived from
a solution is greatly dependent on the infrastructure and the specific
implementation of each vendor.

Vonage, a global leader in cloud communications,
commissioned testRTC, the world's most powerful
WebRTC testing and monitoring platform, to conduct an
analysis of its Vonage Video API quality and performance,
in order to figure out its comparative quality versus other
Video API vendors.

testRTC develops and licenses a testing and monitoring service
designed for WebRTC-based communications. As part of the service,
the company offers a robust WebRTC testing and analysis platform,
and devises the test scripts and methodologies to conduct objective,
repeatable test scenarios.

As part of this project, testRTC has written the applications used in front
of the Video API vendors, defined and implemented test scenarios using
the testRTC platform, conducted the testing and analyzed the results.

Throughout the process, the goal and intent was to understand the
behavior of each platform and the resulting media quality associated
with it. testRTC tested 3 different vendors, over 4 use cases, with 3
different group sizes. This resulted in a total of 36 scenarios, each of
which was executed multiple times to validate repeatability as well as
stability of the scenario.

Our testing shows that Vonage has put a lot of energy and attention to
the call quality on its platform, especially in large group calls scenarios.
In many cases, the Vonage implementation matched the behavior
expected to optimize the experience for multiple users. This is done by
taking into account total bitrate and CPU consumption associated with
more media streams that need to be processed.

We are certain that the out of the box, naive implementation that
we’ve created for the purpose of this analysis can be optimized and
further improved across all vendors. Our intent wasn’t to provide these
optimizations ourselves, but rather to see what optimizations are
provided by the vendors directly.

In this whitepaper, we will first review the scenarios and testing
environment. From there, we will go through a thorough analysis of the
results. In the analysis, we look at CPU consumption, bitrate, jitter and
packet loss. Special focus is also given to screen sharing and limited
bandwidth consumption, where we will try to look deeper at how the
various vendors overcome challenges of these use cases.

 4

User devices
Different users use
different devices
to connect to
services. To be able
to conduct proper
performance analysis
it was important
to standardize the
devices and mediums
used for the test.
testRTC selected
browsers since these
are the most common
environments today
for WebRTC and
because they can
be automated and
profiled without direct
access to the source
code of the tested
application.

Networks
Networks are
dynamic in nature.
They fluctuate based
on the local use of
devices using them
as well as traffic
in the WAN (Wide
Area Network). To
conduct comparative
analysis, the network
conditions have to be
controllable.

Predictability and
repeatability
Repeating certain
scenarios should
have similar
results, providing
predictability to the
system. This enables
testing across
vendors and use
cases with high level
of confidence in the
results collected.

Analysis
The analysis itself
needs to be objective,
relying on KPIs
(Key Performance
Indicators that are
highly measurable).
The KPIs used directly
correlate to the media
quality perceived by
the users.

Assessing Media Quality in WebRTC
When assessing the media quality of a WebRTC application, there are many different aspects
that need to be considered.

These aspects include:

When Vonage set out to conduct this performance
analysis, we strived to create a stable and repeatable
environment that enables an objective analysis.
By using testRTC, planning the test environment
and the test processes, we reached our goals.

 5

Test Environment
Our plan was to test Vonage Video APIs and other well known video API platforms in a set of
predefined scenarios. We focused on how these platforms behave on the network in the various
scenarios.

For the tests themselves we used the reference application provided by Vonage and developed
simple reference applications for the other API platforms. We aimed to make the UI as close as
possible and as simple as possible to reduce its effect on performance.

For the performance testing
itself, we’ve used the testRTC
platform, configuring it in the
following manner:

• A testing probe was assigned for each
user/browser/participant

• Each probe was configured with 4 vCPUs
and ~2 Gb of memory, giving it ample
processing power and resources for the
tasks involved

• Chrome 88 was used

• Camera sources were identical with VGA
resolution. Since we aimed for larger calls,
we wanted to optimize for bandwidth
and screen layouts. Using HD would be
counterproductive in this case

• All participants were allocated and
launched from Google Cloud’s us-west1
data center (located in The Dalles,
Oregon, North America)

• For each test run conducted, we’ve
allocated fresh machines, starting from
scratch

• Each test scenario was executed for a
period of five minutes. This enabled us to
analyze bitrate ramp up, resiliency and
network variations. Using shorter periods
of time wouldn’t yield accurate results in
our scenarios, and longer periods of time
wouldn’t produce any additional data

• Each test scenario was tested with 2, 4
and 8 participants

Vonage

Vendor B

Vendor C

 6

Test Environment (cont'd)
The following test scenarios were selected and conducted for the performance analysis:

Normal conditions
- all participants
join with audio and
video. The network
is configured to run
without any throttling.

Screen sharing
dynamic content -
first participant to
join shares a YouTube
video with dynamic
content.

Screen sharing
static content - first
participant to join
shares a YouTube
video with static
content (a slide deck).

Limited bandwidth
conditions - first
participant to join has
its network configured
to dynamically limit
available bandwidth
to 500kbps on
both incoming and
outgoing traffic for a
period of 100 seconds
in the middle of the
scenario.

Each scenario was tested multiple
times with different numbers of
participants. testRTC wanted to
make sure results aren’t random in
nature and found the results to be
reproducible in nature.

The main metrics testRTC focused
on were bitrate, packet loss, jitter
and CPU consumption.

 1 2 3 4

 7

Performance Results and Analysis
testRTC conducted the tests for each scenario multiple times, taking into account potential
variability in network conditions and infrastructure. In all cases and for all vendors, we’ve seen
stable results across the same scenario when executed multiple times.

We then looked to analyze the results collected, looking at performance indicators selected.
What we were looking for in our results were:

• CPU consumption. The lower CPU consumption is the better the experience is for the user
and the more types of devices the service will be able to support

• Bitrate. The lower the bitrate on the incoming and outgoing streams, the bigger the calls
that can be supported and the less network resources are consumed. Here it is important
to make sure bitrates aren’t too low, as that would negatively affect media quality

• Jitter. The lower the jitter values observed the more stable the media stream is

• Packet loss. We were aiming for no packet loss on all scenarios. The only scenario where
packet loss was observed as part of the test itself was when we limited the available
network bandwidth

• Resolution and frame rate. We’ve focused on these parameters when looking at the
generated screen sharing video streams in the relevant scenarios. Our goal here is to
maintain the original screen resolution at a high frame rate

• Ramp up time. When we limited the bandwidth available, we wanted to see how much time
it takes for a service to ramp up its bitrate once the bandwidth limit was removed. The
faster the ramp up the better

 8

CPU Consumption
CPU use on WebRTC clients is
important for media quality. The
higher the CPU consumption, the
more energy is consumed. On mobile
devices this translates to shorter
battery life and devices heating up.
In both desktop and mobile it means
less CPU available for other tasks
that need to be performed by the
application and in edge cases of high
CPU consumption can lead to lip
sync issues, packet losses and loss
of connectivity.

We started off by reviewing the CPU
consumption of the participants
during the test scenarios.

The graph above shows the average CPU consumption
for each participant in our normal conditions test
scenario with different numbers of participants - 2, 4 and
8.

Vonage CPU consumption
in the 1:1 scenario (2
participants) is higher than
the other vendors but then
gets lower than the other
vendors as the number of
participants increases to 8.

testRTC traced back the
reason to the difference of
rendering: Vonage reference
UI renders bigger video tiles
in 2-way and 4-way calls
than the other vendors:

As the call size increases, the difference in CPU consumption between the vendors reduces. This
relates solely to the application processing and not the API vendor itself.

We have found all vendors analyzed to offer similar CPU consumption values across all test
scenarios: all test results showed CPU consumption of 68-76%, with screen sharing scenarios
taking roughly 4% higher CPU consumption than the normal conditions and limited bandwidth
scenarios across all vendors.

CPU Use For Different Call Size

 9

Bitrate
Video calls consume bitrate.
A good service would try to
consume as little bitrate as
possible while maintaining media
quality, especially as the meeting
size grows.

In our analysis, we focused
on video bitrates, looking at
outgoing and incoming video
bitrates separately.

Outgoing Video Bitrate
The outgoing video bitrate of the various vendors was quite different from one another, each
taking a different approach.

From the graph above, we can deduce that the content affects the actual bitrate. The dynamic
screen sharing content required from all services to increase their bitrate, more than the rest of
the test scenarios used.

Vonage and Vendor B tried using lower bitrate than Vendor C on the uplink. This makes perfect
sense, especially considering the webcam source configured for normal and limited bandwidth
conditions has VGA resolution, where 800kbps is enough for good video quality.

All 3 vendors use simulcast with 2 layers in their solution. Each had a different bitrate
configuration:

Vonage Vendor B Vendor C

Layer 1 200 kbps 200 kbps 50 kbps

Layer 2 750 kbps 800 kbps 1,750 kbps

While Vonage and Vendor B had a lower layer of 200 kbps and limited the higher layer, Vendor C
opted for having a very low bitrate of 50 kbps on its lower layer and a considerably higher bitrate
on the higher layer. The approach Vendor C took creates a wide gap between the lower and
the higher layer which doesn’t leave much flexibility for optimizations or variability in the video
subscriber capabilities. In the case of VGA resolutions, this is also wasteful in resources.

A developer using Vendor C would need to carefully optimize the application to configure the
layers better.

Outgoing Video Bitrate

 10

Incoming Video Bitrate
The graph to the right shows the
variance across incoming video
bitrate observed between the
vendors when using 2, 4 and 8
participants. The scenario selected
is the normal conditions, but similar
results were visible across the
scenarios.

Vonage tended to use lower
incoming bitrates than the rest of
the vendors, no matter the size of
the meeting. Vendor B raises the
bitrate, reaching above 5mbps for
an 8-way video call while vendor C
raises the bitrate to above 10mbps
for the 8-way video call.

Aiming for 4mbps or more in incoming video bitrate isn’t the best decision for most users today.
It eats up on the bandwidth as well as CPU resources of the receiving machine, and in many
cases can cause the session to fail altogether.

Interestingly, Vonage uses more incoming video bitrate for a 4-way call than they do for an
8-way call. This is probably due to a threshold being passed at some point between 4 and 8
participants which affects how they spread the bitrate budget between the available streams.

Jitter and Packet Loss
Jitter and packet loss values
observed across the vendors were
similar and reasonable.

For all our non-traffic-shaping
scenarios we’ve seen no packet
loss reported, which was aligned
with our expectations. Jitter was
low and within reasonable bounds.

One outlier we did observe was
how Vendor C reports back the
outgoing jitter values for video.

We decided to plot the graph
arbitrarily for the outgoing video
jitter on the 4-way video call in the various test scenarios. 2-way and 8-way scenarios showed
the same trends. It can be observed that the jitter reported by Vendor C is considerably higher
than the rest, especially for the screen sharing test scenarios.

Incoming Video Bitrate

Outgoing Video Jitter for
4 Way Test Scenarios

 11

Screen Sharing
With screen sharing, we’ve opted
for running the exact same scenario
but in two variations: dynamic
content and static content.

The dynamic content was based on
the popular Big Buck Bunny video:

Copyright 2008, Blender Foundation / www.bigbuckbunny.org

For the static content, testRTC chose a slide deck explaining webrtc-internals.

Our goal was to see how the various vendors cope with different content types for screen
sharing, focusing on resolution and frame rate. We configured our screen to 1080p resolution:
1920x1080 pixels.

All vendors sent screen sharing alongside the camera feed in the session. We then checked the
receiver metrics on the screen sharing channel and got these values:

Content type Participants Vonage Vendor B Vendor C
Dynamic 2 1080p@11fps 1080p@12fps VGA@3fps

4 1080p@10fps 1080p@8fps VGA@3fps
8 1080p@6fps 1080p@3fps VGA@3fps

Static 2 1080p@24fps 1080p@11fps 1080p@5fps
4 1080p@16fps 1080p@9fps 1080p@3fps
8 1080p@11fps 1080p@5fps 1080p@3fps

The measurements are taken
from the second participant in
each test scenario, looking at the
average frames per second and
bitrate. The resolution was stable
throughout the test scenarios for
all vendors and use cases.

Vonage seemed to fare better
than the other vendors the more
participants we had in a session.
Vendor C didn’t handle the
dynamic content well, with only 3
frames per second for the 2, 4 and
8 participants test scenarios.

 12

The reason behind the behavior of each vendor can be seen in the media diagrams below.

In these diagrams, we capture the incoming video bitrates and frame rates in the dynamic
content scenarios with 2 and 8 participants for one of the viewer participants in each test.

Vonage

The green line on the left graphs and the orange line on the right graphs indicate the screen
sharing video stream.

In a screen sharing scenario, Vonage immediately lowers the bitrate of all incoming video
streams to the lower available layer (200kbps), giving priority to the screen sharing video
stream. This enables them to invest higher bitrate and CPU resources for screen sharing once
the size of the meeting grows to 8 participants.

Vendor B

Vonage, 2 participants Vonage, 8 participants

Vendor B, 2 participants Vendor B, 8 participants

Screen Sharing (cont'd)

The green line on the left graphs and the black line on the right graphs indicate the screen
sharing video stream.

Vendor B starts nicely in the 2 participants graph, but doesn’t prioritize screen sharing over
other video inputs automatically. On the 8 participants scenario that is felt by a lower frames
per second.

 13

The green line on the left graphs and the magenta line on the right graphs indicate the screen
sharing video stream.

Vendor C also doesn’t prioritize screen sharing over other video inputs automatically. Along with
its generally higher bitrate per incoming video stream, this means it starts at a low 3-5 frames
per seconds where it stays for all test scenarios.

For the dynamic content scenarios, Vendor C also needs to reduce the resolution further from
1080p to VGA to be able to maintain screen sharing functionality.

Vendor C

Vendor C, 2 participants Vendor C, 8 participants

Limited Bandwidth
For this test scenario, we configured
the first participant in each test run
to dynamically change the network
configuration it was using in the
following manner:

Participant #1 starts off without any
network limits, just like the rest of
the participants in all test scenarios.
After 100 seconds, participant #1
limits its bandwidth to 500 kbps both
incoming and outgoing. After an
additional 100 seconds, it removes
that limit and proceeds as usual.

Our purpose in this test scenario is
to check how each Video API vendor
handles such network conditions
- what happens during the span of
the limited network conditions - and
how much time it takes the service to
recuperate and get back to previous
conditions.

TIME

BA
N

D
W

ID
TH

100s 200s 300s

500 kbps

Unlimited
bandwidth

Unlimited
bandwidth

Screen Sharing (cont'd)

 14

The graph above was taken from the testRTC console. It depicts the video bitrate of participant
#1 in 4-way calls of the limited bandwidth scenario across the vendors.

Vonage and Vendor B were able to nicely cope with a reduction of bitrate to 500kbps, reaching
back to 750kbps outgoing video bitrate within 15-25 seconds across the test scenarios of 2-way
and 4-way calls. Both didn’t behave well at 8-way calls, failing to reach back to the levels before
the bandwidth limitation within a span of 100 seconds.

Vendor C didn’t deal with the bandwidth limitation scenario well at all. Within 20 seconds of
limiting the bandwidth, it lost incoming streams, both audio and video, opting to close their peer
connections altogether, only to return and reconnect once bitrates came up again, after the
100 seconds period was over. During the bandwidth limitation, the participant didn’t send out
any media and received media only from a single other participant who monopolized its bitrate.
Interestingly, a different strategy could have been employed here, since the lower simulcast
layer used by Vendor C was only 50kbps.

Limited Bandwidth (cont'd)

 15

Summary
This analysis shows how different vendors use WebRTC and the assumptions they take of
network traffic and available compute resources.

testRTC picked four widely common use cases: normal video call, screen sharing of dynamic
content, screen sharing of static content and video call under limited network conditions.

In all scenarios, the vendors took different approaches:

• Vendor C, for example, used simulcast with extremely different bitrates (50kbps and
1,750kbps). This left them exposed and inflexible to the changing conditions of larger
meetings or limited network conditions.

• Vonage took the approach of reducing incoming bitrates aggressively by selecting the
lower simulcast layer (configured to 200kbps in their case). This enables conducting larger
meetings in front of a variety of devices at different network conditions;

• While Vendor B used a similar simulcast configuration, they didn’t make use of it by reducing
total incoming bitrates. This caused a reduction in performance in screen sharing scenarios.

When selecting a Video API vendor, it is important to validate its performance in the scenarios
and use cases you expect in your service. Your mileage may vary from the tests testRTC had
conducted and from the implementations used.

To learn more,
please visit
https://testrtc.com/

testRTC is the world's most powerful
WebRTC testing and monitoring platform led
by the 20-year WebRTC industry expert Tsahi
Levent-Levi. testRTC develops and licenses
a testing and monitoring service designed
and built for the new generation of WebRTC-
based communications. The company
employs Internet web-scale thinking and
architecture to solve traditional VoIP
problems, providing a unique and powerful
set of capabilities to testing teams.

